130 research outputs found

    Theory of continuum percolation III. Low density expansion

    Full text link
    We use a previously introduced mapping between the continuum percolation model and the Potts fluid (a system of interacting s-states spins which are free to move in the continuum) to derive the low density expansion of the pair connectedness and the mean cluster size. We prove that given an adequate identification of functions, the result is equivalent to the density expansion derived from a completely different point of view by Coniglio et al. [J. Phys A 10, 1123 (1977)] to describe physical clustering in a gas. We then apply our expansion to a system of hypercubes with a hard core interaction. The calculated critical density is within approximately 5% of the results of simulations, and is thus much more precise than previous theoretical results which were based on integral equations. We suggest that this is because integral equations smooth out overly the partition function (i.e., they describe predominantly its analytical part), while our method targets instead the part which describes the phase transition (i.e., the singular part).Comment: 42 pages, Revtex, includes 5 EncapsulatedPostscript figures, submitted to Phys Rev

    Severe anemia in Malawian children

    Get PDF
    Background Severe anemia is a major cause of sickness and death in African children, yet the causes of anemia in this population have been inadequately studied. Methods We conducted a case-control study of 381 preschool children with severe anemia (hemoglobin concentration, <5.0 g per deciliter) and 757 preschool children without severe anemia in urban and rural settings in Malawi. Causal factors previously associated with severe anemia were studied. The data were examined by multivariate analysis and structural equation modeling. Results Bacteremia (adjusted odds ratio, 5.3; 95% confidence interval [CI], 2.6 to 10.9), malaria (adjusted odds ratio, 2.3; 95% CI, 1.6 to 3.3), hookworm (adjusted odds ratio, 4.8; 95% CI, 2.0 to 11.8), human immunodeficiency virus infection (adjusted odds ratio, 2.0; 95% CI, 1.0 to 3.8), the G6PD(sup -202/-376) genetic disorder (adjusted odds ratio, 2.4; 95% CI, 1.3 to 4.4), vitamin A deficiency (adjusted odds ratio, 2.8; 95% CI, 1.3 to 5.8), and vitamin B(sub 12) deficiency (adjusted odds ratio, 2.2; 95% CI, 1.4 to 3.6) were associated with severe anemia. Folate deficiency, sickle cell disease, and laboratory signs of an abnormal inflammatory response were uncommon. Iron deficiency was not prevalent in case patients (adjusted odds ratio, 0.37; 95% CI, 0.22 to 0.60) and was negatively associated with bacteremia. Malaria was associated with severe anemia in the urban site (with seasonal transmission) but not in the rural site (where malaria was holoendemic). Seventy-six percent of hookworm infections were found in children under 2 years of age. Conclusions There are multiple causes of severe anemia in Malawian preschool children, but folate and iron deficiencies are not prominent among them. Even in the presence of malaria parasites, additional or alternative causes of severe anemia should be considere

    Research Article (New England Journal of Medicine) Severe anemia in Malawian children

    Get PDF
    Background: Severe anemia is a major cause of sickness and death in African children, yet the causes of anemia in this population have been inadequately studied.Methods: We conducted a case–control study of 381 preschool children with severe anemia (hemoglobin concentration, &lt;5.0 g per deciliter) and 757 preschool children without severe anemia in urban and rural settings in Malawi. Causal factors  previously associated with severe anemia were studied. The data were examined by multivariate analysis and structural equation modeling.Results: Bacteremia (adjusted odds ratio, 5.3; 95% confidence interval [CI], 2.6 to 10.9), malaria (adjusted odds ratio, 2.3; 95% CI, 1.6 to 3.3), hookworm (adjusted odds ratio, 4.8; 95% CI, 2.0 to 11.8), human immunodeficiency virus infection (adjusted odds ratio, 2.0; 95% CI, 1.0 to 3.8), the G6PD−202/−376 genetic disorder (adjusted odds ratio, 2.4; 95% CI, 1.3 to 4.4), vitamin A deficiency (adjusted odds ratio, 2.8; 95% CI, 1.3 to 5.8), and vitamin B12 deficiency (adjusted odds ratio, 2.2; 95% CI, 1.4 to 3.6) were associated with severe anemia. Folate deficiency, sickle cell disease, and laboratory signs of an abnormal  inflammatory response were uncommon. Iron deficiency was not prevalent in case patients (adjusted odds ratio, 0.37; 95% CI, 0.22 to 0.60) and was negatively associated with bacteremia. Malaria was associated with severe anemia in the urban site (with seasonal transmission) but not in the rural site (where malaria was holoendemic). Seventy-six percent of hookworm infections were found in children under 2 years of age.Conclusions: There are multiple causes of severe anemia in Malawian preschool children, but folate and iron deficiencies are not prominent among them. Even in the presence of malaria parasites, additional or alternative causes of severe anemia should be considered

    Risk sharing arrangements for pharmaceuticals: potential considerations and recommendations for European payers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been an increase in 'risk sharing' schemes for pharmaceuticals between healthcare institutions and pharmaceutical companies in Europe in recent years as an additional approach to provide continued comprehensive and equitable healthcare. There is though confusion surrounding the terminology as well as concerns with existing schemes.</p> <p>Methods</p> <p>Aliterature review was undertaken to identify existing schemes supplemented with additional internal documents or web-based references known to the authors. This was combined with the extensive knowledge of health authority personnel from 14 different countries and locations involved with these schemes.</p> <p>Results and discussion</p> <p>A large number of 'risk sharing' schemes with pharmaceuticals are in existence incorporating both financial-based models and performance-based/outcomes-based models. In view of this, a new logical definition is proposed. This is "<it>risk sharing' schemes should be considered as agreements concluded by payers and pharmaceutical companies to diminish the impact on payers' budgets for new and existing schemes brought about by uncertainty and/or the need to work within finite budgets</it>". There are a number of concerns with existing schemes. These include potentially high administration costs, lack of transparency, conflicts of interest, and whether health authorities will end up funding an appreciable proportion of a new drug's development costs. In addition, there is a paucity of published evaluations of existing schemes with pharmaceuticals.</p> <p>Conclusion</p> <p>We believe there are only a limited number of situations where 'risk sharing' schemes should be considered as well as factors that should be considered by payers in advance of implementation. This includes their objective, appropriateness, the availability of competent staff to fully evaluate proposed schemes as well as access to IT support. This also includes whether systematic evaluations have been built into proposed schemes.</p

    Coronavirus Gene 7 Counteracts Host Defenses and Modulates Virus Virulence

    Get PDF
    Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of gene 7 by the TGEV genome most likely has provided a selective advantage to the virus

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P\textit{P}  < 5 × 108^{-8}). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (R\textit{R}g_{g} = -0.22, P\textit{P}  = 5.5 × 1013^{-13}), T2D (R\textit{R}g_{g} = -0.27, P\textit{P}  = 1.1 × 106^{-6}) and coronary artery disease (R\textit{R}g_{g} = -0.30, P\textit{P}  = 6.5 × 109^{-9}). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P\textit{P} = 1.9 × 104^{-4}). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.For a full list of the funders pelase visit the publisher's website and look at the supplemetary material provided. Some of the funders are: British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society and Wellcome Trust

    Evidence-Based Guidelines for Cardiovascular Disease Prevention in Women

    Get PDF
    Significant advances in our knowledge about interventions to prevent cardiovascular disease (CVD) have occurred since publication of the first female-specific recommendations for preventive cardiology in 1999.1 Despite research-based gains in the treatment of CVD, it remains the leading killer of women in the United States and in most developed areas of the world.2–3 In the United States alone, more than one half million women die of CVD each year, exceeding the number of deaths in men and the next 7 causes of death in women combined. This translates into approximately 1 death every minute.2 Coronary heart disease (CHD) accounts for the majority of CVD deaths in women, disproportionately afflicts racial and ethnic minorities, and is a prime target for prevention.1–2 Because CHD is often fatal, and because nearly two thirds of women who die suddenly have no previously recognized symptoms, it is essential to prevent CHD.2 Other forms of atherosclerotic/thrombotic CVD, such as cerebrovascular disease and peripheral arterial disease, are critically important in women. Strategies known to reduce the burden of CHD may have substantial benefits for the prevention of noncoronary atherosclerosis, although they have been studied less extensively in some of these settings

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg-0.22, P =5.5x10-13), T2D (rg-0.27, P =1.1x10-6) and coronary artery disease (rg-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated
    corecore